Yang–baxter Deformations and Rack Cohomology
نویسنده
چکیده
Abstract. In his study of quantum groups, Drinfeld suggested to consider set-theoretic solutions of the Yang–Baxter equation as a discrete analogon. As a typical example, every conjugacy class in a group, or more generally every rack Q provides such a Yang–Baxter operator cQ : x ⊗ y 7→ y ⊗ x . In this article we study deformations of cQ within the space of Yang–Baxter operators. Over a complete ring these are classified by Yang–Baxter cohomology. We show that the general Yang–Baxter cohomology complex of cQ homotopyretracts to a much smaller subcomplex, called quasi-diagonal. This greatly simplifies the deformation theory of cQ, including the modular case which had previously been left in suspense, by establishing that every deformation of cQ is gauge equivalent to a quasi-diagonal one. In a quasi-diagonal deformation only behaviourally equivalent elements of Q interact; if all elements of Q are behaviourally distinct, then the Yang–Baxter cohomology of cQ collapses to its diagonal part, which we identify with rack cohomology. This establishes a strong relationship between the classical deformation theory following Gerstenhaber and the more recent cohomology theory of racks, both of which have numerous applications in knot theory.
منابع مشابه
Yang-Baxter deformations of quandles and racks
Given a rack Q and a ring A , one can construct a Yang-Baxter operator cQ : V ⊗ V → V ⊗ V on the free A-module V = AQ by setting cQ(x ⊗ y) = y ⊗ x y for all x, y ∈ Q . In answer to a question initiated by D.N.Yetter and P.J. Freyd, this article classifies formal deformations of cQ in the space of Yang-Baxter operators. For the trivial rack, where x = x for all x, y , one has, of course, the cla...
متن کاملCohomology of Categorical Self-Distributivity
We define self-distributive structures in the categories of coalgebras and cocommutative coalgebras. We obtain examples from vector spaces whose bases are the elements of finite quandles, the direct sum of a Lie algebra with its ground field, and Hopf algebras. The selfdistributive operations of these structures provide solutions of the Yang–Baxter equation, and, conversely, solutions of the Ya...
متن کاملYang–Baxter sigma models based on the CYBE
It is known that Yang–Baxter sigma models provide a systematic way to study integrable deformations of both principal chiral models and symmetric coset sigma models. In the original proposal and its subsequent development, the deformations have been characterized by classical r-matrices satisfying the modified classical Yang–Baxter equation (mCYBE). In this article, we propose the Yang–Baxter s...
متن کاملVirtual Yang-Baxter cocycle invariants
We extend the Yang-Baxter cocycle invariants for virtual knots by augmenting Yang-Baxter 2-cocycles with cocycles from a cohomology theory associated to a virtual biquandle structure. These invariants coincide with the classical Yang-Baxter cocycle invariants for classical knots but provide extra information about virtual knots and links. In particular, they provide a method for detecting non-c...
متن کاملNew Fundamental Symmetries of Integrable Systems and Partial Bethe Ansatz
We introduce a new concept of quasi-Yang-Baxter algebras. The quantum quasiYang-Baxrer algebras being simple but non-trivial deformations of ordinary algebras of monodromy matrices realize a new type of quantum dynamical symmetries and nd an unexpected and remarkable applications in quantum inverse scattering method (QISM). We show that applying to quasi-Yang-Baxter algebras the standard proced...
متن کامل